This paper presents a distributed algorithm applicable to a wide range of practical multi-robot applications. In such multi-robot applications, the user-defined objectives of the mission can be cast as a general optimization problem, without explicit guidelines of the subtasks per different robot. Owing to the unknown environment, unknown robot dynamics, sensor nonlinearities, etc., the analytic form of the optimization cost function is not available a priori. Therefore, standard gradient-descent-like algorithms are not applicable to these problems. To tackle this, we introduce a new algorithm that carefully designs each robot's subcost function, the optimization of which can accomplish the overall team objective. Upon this transformation, we propose a distributed methodology based on the cognitive-based adaptive optimization (CAO) algorithm, that is able to approximate the evolution of each robot's cost function and to adequately optimize its decision variables (robot actions). The latter can be achieved by online learning only the problem-specific characteristics that affect the accomplishment of mission objectives. The overall, low-complexity algorithm can straightforwardly incorporate any kind of operational constraint, is fault-tolerant, and can appropriately tackle time-varying cost functions. A cornerstone of this approach is that it shares the same convergence characteristics as those of block coordinate descent algorithms. The proposed algorithm is evaluated in three heterogeneous simulation set-ups under multiple scenarios, against both general-purpose and problem-specific algorithms. Source code is available at https://github.com/athakapo/A-distributed-plug-n-play-algorithm-for-multi-robot-applications.


翻译:本文展示了适用于多种实用多机器人应用程序的分布式算法。 在这样的多机器人应用程序中, 用户定义的任务可以被描绘成一个总体优化问题, 没有为每个不同机器人的子任务提供明确的指南。 由于未知的环境、 未知的机器人动态、 传感器非线性等, 无法先验地提供优化成本功能的分析形式。 因此, 标准渐变式类似算法不适用于这些问题。 为了解决这个问题, 我们引入了一种新的算法, 仔细设计每个机器人的子成本功能, 其优化可以达到团队整体目标。 在此变换中, 我们提议了一个基于基于认知的适应优化( CAO) 算法的分布式方法。 由于未知的环境、 未知的机器人动态动态、 传感器非线性非线性等, 优化成本函数( robot 动作) 。 后者可以通过在线学习影响任务目标实现的问题性特性来实现。 总体的、 低复变法性算法性算法可以直截然地纳入任何操作上的制约, 其优化可以达到团队的全局性目标。 。 在这种变法中, 错理解性- 和正确地算法的变法中, 这些变法的变法中, 的变法性平式方法的公式是用来处理这些变法的公式- 。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员