Triangle meshes remain the most popular data representation for surface geometry. This ubiquitous representation is essentially a hybrid one that decouples continuous vertex locations from the discrete topological triangulation. Unfortunately, the combinatorial nature of the triangulation prevents taking derivatives over the space of possible meshings of any given surface. As a result, to date, mesh processing and optimization techniques have been unable to truly take advantage of modular gradient descent components of modern optimization frameworks. In this work, we present a differentiable surface triangulation that enables optimization for any per-vertex or per-face differentiable objective function over the space of underlying surface triangulations. Our method builds on the result that any 2D triangulation can be achieved by a suitably perturbed weighted Delaunay triangulation. We translate this result into a computational algorithm by proposing a soft relaxation of the classical weighted Delaunay triangulation and optimizing over vertex weights and vertex locations. We extend the algorithm to 3D by decomposing shapes into developable sets and differentiably meshing each set with suitable boundary constraints. We demonstrate the efficacy of our method on various planar and surface meshes on a range of difficult-to-optimize objective functions. Our code can be found online: https://github.com/mrakotosaon/diff-surface-triangulation.


翻译:三角三角图仍然是最受欢迎的地表几何数据代表。 这种无处不在的表面代表方式基本上是一种混合的组合式代表方式, 它可以将连续的顶部位置与离散的表层三角形区分开来。 不幸的是, 三角形的组合性质防止了在任何特定表面可能的网格空间上采集衍生物。 因此, 迄今为止, 网状处理和优化技术无法真正利用现代优化框架的模块化梯度下游组件。 在这项工作中, 我们展示了一种不同的表面三角图, 使任何每面或每面的顶部不同目标功能能够与地表三角体空间相优化。 我们的方法建立在任何2D三角图的组合性质都能够通过适当绕过加权德劳纳三角组合空间实现。 我们把这个结果转换成一个计算算法, 提议对古典加权德劳纳三角三角组合进行软放松, 优化顶替脊椎重量和垂直三角体位置位置的位置。 我们把算法扩展为3D, 将形状的形状化成可开发的套件/ 不同的地平面图, 显示我们各自不同的地平面的边框框。 我们找到一个适当的边框的图。 我们找到一个适当的边框。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
42+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
110+阅读 · 2020年3月12日
已删除
AI掘金志
7+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡图灵智库】混合相机位姿估计
泡泡机器人SLAM
4+阅读 · 2018年5月15日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月13日
VIP会员
相关资讯
已删除
AI掘金志
7+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡图灵智库】混合相机位姿估计
泡泡机器人SLAM
4+阅读 · 2018年5月15日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员