We present a volumetric mesh-based algorithm for parameterizing the placenta to a flattened template to enable effective visualization of local anatomy and function. MRI shows potential as a research tool as it provides signals directly related to placental function. However, due to the curved and highly variable in vivo shape of the placenta, interpreting and visualizing these images is difficult. We address interpretation challenges by mapping the placenta so that it resembles the familiar ex vivo shape. We formulate the parameterization as an optimization problem for mapping the placental shape represented by a volumetric mesh to a flattened template. We employ the symmetric Dirichlet energy to control local distortion throughout the volume. Local injectivity in the mapping is enforced by a constrained line search during the gradient descent optimization. We validate our method using a research study of 111 placental shapes extracted from BOLD MRI images. Our mapping achieves sub-voxel accuracy in matching the template while maintaining low distortion throughout the volume. We demonstrate how the resulting flattening of the placenta improves visualization of anatomy and function. Our code is freely available at https://github.com/mabulnaga/placenta-flattening .
翻译:我们提出一个以体积为基础的计算算法,将胎盘参数化成一个平坦的模板,以便能够有效地直视当地解剖和功能。 MRI 显示作为研究工具的潜力,因为它提供了与胎盘功能直接相关的信号。然而,由于胎盘的体积形状曲线和高度变量,很难解释和直观这些图像。我们通过绘制胎盘图来解决解释挑战,使其与熟悉的体外形状相仿。我们把参数化作为一个优化问题,用于绘制以体积模型为代表的胎盘形状到一个平坦模板。我们利用对Drichtrit Dirichlet 能量来控制整个卷内的局部扭曲。在斜度下层优化期间,通过受限制的线搜索来强制进行绘图中的局部投影性。我们使用对从BOLD MRI 图像中提取的111个胎盘形状进行的研究来验证我们的方法。我们的绘图在匹配模板时实现了子voxl准确性,同时在整个卷中保持低的扭曲性。我们演示由此产生的胎盘调化是如何改善一个剖面/图的可视性的。