This paper presents a distributed algorithm applicable to a wide range of practical multi-robot applications. In such multi-robot applications, the user-defined objectives of the mission can be cast as a general optimization problem, without explicit guidelines of the subtasks per different robot. Owing to the unknown environment, unknown robot dynamics, sensor nonlinearities, etc., the analytic form of the optimization cost function is not available a priori. Therefore, standard gradient-descent-like algorithms are not applicable to these problems. To tackle this, we introduce a new algorithm that carefully designs each robot's subcost function, the optimization of which can accomplish the overall team objective. Upon this transformation, we propose a distributed methodology based on the cognitive-based adaptive optimization (CAO) algorithm, that is able to approximate the evolution of each robot's cost function and to adequately optimize its decision variables (robot actions). The latter can be achieved by online learning only the problem-specific characteristics that affect the accomplishment of mission objectives. The overall, low-complexity algorithm can straightforwardly incorporate any kind of operational constraint, is fault tolerant, and can appropriately tackle time-varying cost functions. A cornerstone of this approach is that it shares the same convergence characteristics as those of block coordinate descent algorithms. The proposed algorithm is evaluated in three heterogeneous simulation set-ups under multiple scenarios, against both general-purpose and problem-specific algorithms. Source code is available at \url{https://github.com/athakapo/A-distributed-plug-n-play-algorithm-for-multi-robot-applications}.
翻译:本文展示了适用于多种实用多机器人应用程序的分布式算法。 在这样的多机器人应用程序中, 用户定义的任务可以被描绘成一个总体优化问题, 没有为每个不同机器人的子任务提供明确的指南。 由于未知的环境、 未知的机器人动态、 传感器非线性等, 无法先验地提供优化成本功能的分析形式。 因此, 标准渐变式类似算法不适用于这些问题。 为了解决这个问题, 我们引入了一种新的算法, 仔细设计每个机器人的子成本功能, 其优化可以达到团队总体目标。 在此变换中, 我们提议了一个基于基于认知的适应优化( CAO) 算法的分布式方法。 由于未知的环境、 未知的机器人动态动态、 传感器非线性非线性等, 优化成本函数( robot动作动作) 。 后者可以通过在线学习影响任务目标实现的问题特性来实现。 总体的、 低变异性算算法算法可以直截然地包含任何操作上的制约性, 亚马氏- 质- 平级算法- 的公式- 公式- 模型- 公式- 公式- 公式- 公式- 公式- 公式- 公式- 公式- 公式- 公式- 公式- 公式- 公式- 方法-, 的公式- 和公式- 公式- 公式- 公式- 公式- 公式- 公式- 公式- 公式- 公式- 方法- 方法- 方法- 的公式- 方法-, 的,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,