Video language pre-training methods have mainly adopted sparse sampling techniques to alleviate the temporal redundancy of videos. Though effective, sparse sampling still suffers inter-modal redundancy: visual redundancy and textual redundancy. Compared with highly generalized text, sparsely sampled frames usually contain text-independent portions, called visual redundancy. Sparse sampling is also likely to miss important frames corresponding to some text portions, resulting in textual redundancy. Inter-modal redundancy leads to a mismatch of video and text information, hindering the model from better learning the shared semantics across modalities. To alleviate it, we propose Redundancy-aware Video-language Pre-training. We design a redundancy measurement of video patches and text tokens by calculating the cross-modal minimum dis-similarity. Then, we penalize the highredundant video patches and text tokens through a proposed redundancy-aware contrastive learning. We evaluate our method on four benchmark datasets, MSRVTT, MSVD, DiDeMo, and LSMDC, achieving a significant improvement over the previous stateof-the-art results. Our code are available at https://github.com/caskcsg/VLP/tree/main/RaP.
翻译:培训前的视频语言方法主要采用稀有的抽样技术来缓解视频的时间冗余。虽然有效的、稀少的抽样仍然受到多种模式的冗余:视觉冗余和文字冗余。与高度普及的文本相比,稀少的抽样框架通常含有不依赖文本的部分,称为视觉冗余。粗略的抽样方法还可能错过与某些文本部分相对应的重要框架,从而造成文字冗余。双模式冗余导致视频和文本信息的不匹配,使模型无法更好地学习不同模式的共同语义。为了减轻这一差异,我们提议重新开发有觉悟的视频语言预留。我们设计了视频补丁和文字符号的冗余量度,方法是计算跨模式的最低差异。然后,我们通过拟议的冗余-认知对比学习来惩罚高冗余的视频补丁和文字符号。我们评估了四个基准数据集MSRVTTT、MSVD、DVD、DDEMo和LSMDC的方法,从而大大改进了以往的状态。我们的代码可以在 https://gibub/Ram/Casksmain.