In numerical existence proofs for solutions of the semi-linear elliptic system, evaluating the norm of the inverse of a perturbed Laplace operator plays an important role. We reveal an eigenvalue problem to design a method for verifying the invertibility of the operator and evaluating the norm of its inverse based on Liu's method and the Temple-Lehman-Goerisch method. We apply the inverse-norm's estimation to the Dirichlet boundary value problem of the Lotka-Volterra system with diffusion terms and confirm the efficacy of our method.
翻译:在半线性椭圆系统解决方案的数字存在证明中,评估受扰动的Laplace操作员的反向标准具有重要作用,我们揭示了一个二元值问题,以设计一种方法来核查操作员的可视性,并根据刘殿莱曼-戈里施方法和Temple-Lehman-Goerisch方法评价其反向标准。我们用扩散术语对Lotka-Volterra系统的Drichlet边界值问题进行反向估计,并确认我们方法的有效性。