We formulate extendibility of the minimax one-trajectory length of several statistical Markov chains inference problems and give sufficient conditions for both the possibility and impossibility of such extensions. We follow up and apply this framework to recently published results on learning and identity testing of ergodic Markov chains. In particular, we show that for some of the aforementioned results, we can omit the aperiodicity requirement by simulating an $\alpha$-lazy version of the original process, and quantify the incurred cost of removing this assumption.
翻译:我们制定若干统计性Markov链的单轨长度的扩展性,并为这种扩展的可能性和不可能性提供充分的条件。我们跟踪并运用这一框架,对最近公布的对ergodic Markov链的学习和身份测试结果进行跟踪和运用。我们特别表明,对于上述一些结果,我们可以通过模拟原始过程的美元-美元-迷你版本,并量化取消这一假设所产生的成本,从而省略定期性要求。