Ensemble Kalman inversion is a parallelizable derivative-free method to solve inverse problems. The method uses an ensemble that follows the Kalman update formula iteratively to solve an optimization problem. The ensemble size is crucial to capture the correct statistical information in estimating the unknown variable of interest. Still, the ensemble is limited to a size smaller than the unknown variable's dimension for computational efficiency. This study proposes a strategy to correct the sampling error due to a small ensemble size, which improves the performance of the ensemble Kalman inversion. This study validates the efficiency and robustness of the proposed strategy through a suite of numerical tests, including compressive sensing, image deblurring, parameter estimation of a nonlinear dynamical system, and a PDE-constrained inverse problem.
翻译:串联 Kalman 的反向转换是解决反向问题的一种平行的无衍生物方法。 该方法使用按照 Kalman 更新公式迭代更新公式的组合来解决优化问题。 组合大小对于在估计未知的利益变量时捕捉正确的统计信息至关重要。 不过, 组合的大小小于计算效率未知变量的维度。 本研究提出了一个战略, 以纠正由于小组合大小导致的抽样错误, 从而改进组合式 Kalman 反向的性能。 本研究通过一系列数字测试, 包括压缩感测、 图像除尘器、 非线性动态系统的参数估计, 以及受 PDE 约束的反向问题, 来验证拟议战略的效率和稳健性 。