Several applications in medical imaging and non-destructive material testing lead to inverse elliptic coefficient problems, where an unknown coefficient function in an elliptic PDE is to be determined from partial knowledge of its solutions. This is usually a highly non-linear ill-posed inverse problem, for which unique reconstructability results, stability estimates and global convergence of numerical methods are very hard to achieve. The aim of this note is to point out a new connection between inverse coefficient problems and semidefinite programming that may help addressing these challenges. We show that an inverse elliptic Robin transmission problem with finitely many measurements can be equivalently rewritten as a uniquely solvable convex non-linear semidefinite optimization problem. This allows to explicitly estimate the number of measurements that is required to achieve a desired resolution, to derive an error estimate for noisy data, and to overcome the problem of local minima that usually appears in optimization-based approaches for inverse coefficient problems.


翻译:在医学成像和非破坏性材料测试中,有几个应用导致逆向椭圆系数问题,在这种情况下,对椭圆形PDE中未知的系数功能要根据对其解决办法的部分了解来确定,这通常是一个高度非线性不良的反向问题,对于这个问题,很难实现独特的可重建性结果、稳定性估计和数字方法的全球趋同。本说明的目的是指出反向系数问题与有助于应对这些挑战的半无穷编程之间的新联系。我们表明,以有限数量测量的反向椭圆形罗宾传播问题,可以等同于一个独特的可溶性可调和的非线性半线性优化问题。这样可以明确估计实现预期解决方案所需的测量数量,为噪音数据得出误差估计,并克服通常出现在以优化为基础的办法中用于反向系数问题的当地微型问题。

0
下载
关闭预览

相关内容

【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
246+阅读 · 2020年5月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月14日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员