As an effective nonparametric method, empirical likelihood (EL) is appealing in combining estimating equations flexibly and adaptively for incorporating data information. To select important variables in the sparse high-dimensional model, we consider a penalized EL method based on robust estimating functions by applying two penalty functions for regularizing the regression parameters and the associated Lagrange multipliers simultaneously, which allows the dimensionalities of both regression parameters and estimating equations to grow exponentially with the sample size. The proposed method can improve the robustness and effectiveness when the data have underlying outliers or heavy tails in the response variables and/or covariates. The oracle properties are also established under some regularity conditions. Extensive simulation studies and a yeast cell data are used to evaluate the performance of the proposed method. The numerical results reveal that robust remedies on estimating equations are needed when the data have heavy tails and/or include underlying outliers.
翻译:作为一种有效的非参数方法,实证可能性(EL)在以灵活和适应的方式综合估算方程以纳入数据信息方面具有吸引力。为了在稀疏高维模型中选择重要的变量,我们考虑一种基于稳健估算功能的受罚EL方法,即同时应用两种惩罚功能来规范回归参数及相关的拉格朗乘数,从而使回归参数和估计方程的维度随样本大小而成倍增长。当数据在反应变量和/或共变中嵌入外端或重尾巴时,拟议方法可以提高坚固性和有效性。甲骨特性也是在某些常规条件下建立的。使用广泛的模拟研究和酵母细胞数据来评估拟议方法的性能。数字结果显示,当数据有重尾部和/或包括底外端外端时,需要对估算方进行强有力的补救。