Zero inflation is a common nuisance while monitoring disease progression over time. This article proposes a new observation driven model for zero inflated and over-dispersed count time series. The counts given the past history of the process and available information on covariates is assumed to be distributed as a mixture of a Poisson distribution and a distribution degenerate at zero, with a time dependent mixing probability, $\pi_t$. Since, count data usually suffers from overdispersion, a Gamma distribution is used to model the excess variation, resulting in a zero inflated Negative Binomial (NB) regression model with mean parameter $\lambda_t$. Linear predictors with auto regressive and moving average (ARMA) type terms, covariates, seasonality and trend are fitted to $\lambda_t$ and $\pi_t$ through canonical link generalized linear models. Estimation is done using maximum likelihood aided by iterative algorithms, such as Newton Raphson (NR) and Expectation and Maximization (EM). Theoretical results on the consistency and asymptotic normality of the estimators are given. The proposed model is illustrated using in-depth simulation studies and a dengue data set.
翻译:零通胀是一种常见的烦扰, 监测疾病随时间而不断演变。 本条提出一个新的零膨胀和超分散计时时间序列的观察驱动模型。 根据这一过程的历史和关于共变数的现有信息, 计数假定作为Poisson分布的混合物, 分配情况在零时降为零, 其时间取决于混合概率( $\pi_ t$) 。 由于计数数据通常有过度分散的情况, 使用伽玛分布来模拟过量变异, 从而产生一个零膨胀负负比小米( NB) 回归模型, 平均参数为 $\lambda_ t$。 带有自动递增和移动平均(ARMA) 条件、 共变、 季节性和趋势的线性预测器, 以P$\lambda_ t$ 和 $\ pi_ pi_t$ 以零为混合, 时间取决于时间的混合概率混合概率。 由于计算数据通常使用由调法帮助, 例如牛顿 Raphson 和 期望和最大化( EM. ) 提议的关于模型和模拟的模拟数据设置的理论结果是提供的。