Toward user-driven Metaverse applications with fast wireless connectivity and tremendous computing demand through future 6G infrastructures, we propose a Brain-Computer Interface (BCI) enabled framework that paves the way for the creation of intelligent human-like avatars. Our approach takes a first step toward the Metaverse systems in which the digital avatars are envisioned to be more intelligent by collecting and analyzing brain signals through cellular networks. In our proposed system, Metaverse users experience Metaverse applications while sending their brain signals via uplink wireless channels in order to create intelligent human-like avatars at the base station. As such, the digital avatars can not only give useful recommendations for the users but also enable the system to create user-driven applications. Our proposed framework involves a mixed decision-making and classification problem in which the base station has to allocate its computing and radio resources to the users and classify the brain signals of users in an efficient manner. To this end, we propose a hybrid training algorithm that utilizes recent advances in deep reinforcement learning to address the problem. Specifically, our hybrid training algorithm contains three deep neural networks cooperating with each other to enable better realization of the mixed decision-making and classification problem. Simulation results show that our proposed framework can jointly address resource allocation for the system and classify brain signals of the users with highly accurate predictions.


翻译:为了通过未来的6G基础设施实现用户驱动的具有快速无线连通性和巨大的计算需求的元数据应用,我们提议了一个大脑-计算机界面(BCI)启用框架,为创建智能人型天体铺平道路。我们的方法是朝着Metverse系统迈出第一步,设想数字天体通过细胞网络收集和分析大脑信号,使数字天体体体体体体体更加智能。在我们提议的系统中,Meteve用户体验了元数据应用,同时通过上链接无线频道发送他们的大脑信号,以便在基地站创建智能人型天体。因此,数字天体不仅可以为用户提供有益的建议,而且使系统能够创建用户驱动的应用。我们提议的框架涉及一个混合的决策和分类问题,基础台必须向用户分配其计算和无线电资源,并以有效的方式对用户的大脑信号进行分类。为此,我们提出一种混合培训算法,利用在深层强化学习方面的最新进展来解决这一问题。具体地说,我们的混合培训算法包含三个深层的神经网络,不仅能为用户提供有用的建议,而且还能使系统创建由用户驱动的应用程序创建由用户驱动的应用程序,从而更好地实现混合决策和高层次的预测,从而显示我们的系统,从而能更好地实现对结果的精确的分类。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
10+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
30+阅读 · 2022年2月15日
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
10+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员