Inspired by BatchNorm, there has been an explosion of normalization layers for deep neural networks (DNNs). However, these alternative normalization layers have seen minimal use, partially due to a lack of guiding principles that can help identify when these layers can serve as a replacement for BatchNorm. To address this problem, we take a theoretical approach, generalizing the known beneficial mechanisms of BatchNorm to several recently proposed normalization techniques. Our generalized theory leads to the following set of principles: (i) similar to BatchNorm, activations-based normalization layers can prevent exponential growth of activations in ResNets, but parametric layers require explicit remedies; (ii) use of GroupNorm can ensure informative forward propagation, with different samples being assigned dissimilar activations, but increasing group size results in increasingly indistinguishable activations for different samples, explaining slow convergence speed in models with LayerNorm; (iii) small group sizes result in large gradient norm in earlier layers, hence explaining training instability issues in Instance Normalization and illustrating a speed-stability tradeoff in GroupNorm. Overall, our analysis reveals a unified set of mechanisms that underpin the success of normalization methods in deep learning, providing us with a compass to systematically explore the vast design space of DNN normalization layers.


翻译:在BatchNorm的启发下,深神经网络(DNNNs)的正常化层发生了爆炸,但这些替代的正常化层的使用极少,部分原因是缺乏能够帮助确定这些层何时可以取代BatchNorm的指导原则。为了解决这一问题,我们采取了一种理论方法,将已知的BatchNorm的有益机制推广到最近提出的若干正常化技术。我们的普遍理论导致了一系列原则:(一) 类似于BatchNorm,基于启动的正常化层可以防止ResNet的激活迅速增长,但对应层需要明确的补救;(二) GroNorm的使用可以确保信息性的前瞻性传播,因为不同的样本被指定为不同版本的激活,但群体规模的扩大导致不同样本的可区别性激活,解释了与TelmNorm模型的缓慢趋同速度;(三) 小群体规模导致早期层次的大规模梯度规范,从而解释常规化中的训练不稳定问题,并表明在集团Norm系统中的快速贸易交易需要明确的补救;(二) GroNMs的使用可以确保信息传播,因为不同的样本被分配为深层的标准化提供了一套统一的空间研究标准。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
70+阅读 · 2020年10月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
小样本学习(Few-shot Learning)综述
云栖社区
22+阅读 · 2019年4月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
24+阅读 · 2021年1月25日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
11+阅读 · 2018年7月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
小样本学习(Few-shot Learning)综述
云栖社区
22+阅读 · 2019年4月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员