Combinatorial optimization problems are notoriously challenging for neural networks, especially in the absence of labeled instances. This work proposes an unsupervised learning framework for CO problems on graphs that can provide integral solutions of certified quality. Inspired by Erdos' probabilistic method, we use a neural network to parametrize a probability distribution over sets. Crucially, we show that when the network is optimized w.r.t. a suitably chosen loss, the learned distribution contains, with controlled probability, a low-cost integral solution that obeys the constraints of the combinatorial problem. The probabilistic proof of existence is then derandomized to decode the desired solutions. We demonstrate the efficacy of this approach to obtain valid solutions to the maximum clique problem and to perform local graph clustering. Our method achieves competitive results on both real datasets and synthetic hard instances.
翻译:混合优化问题对神经网络具有众所周知的挑战性,特别是在没有贴标签的例子的情况下。 这项工作提议在图表上为CO问题建立一个不受监督的学习框架, 以提供认证质量的综合解决方案。 在Erdos概率法的启发下, 我们使用神经网络来对各组的概率分布进行对称。 关键是, 我们显示当网络优化时, 一个选择得当的损失, 学习的分布包含一种低成本的综合解决方案, 并且有控制的可能性, 满足组合问题的制约。 存在的可能性证明随后被解密, 解开所希望的解决方案。 我们展示了这一方法的有效性, 以获得解决最大分类问题的有效解决方案, 并进行本地的图形组合。 我们的方法在真实数据集和合成硬体实例上都取得了竞争性的结果 。