In this paper, we explore the role of Instance Normalization in low-level vision tasks. Specifically, we present a novel block: Half Instance Normalization Block (HIN Block), to boost the performance of image restoration networks. Based on HIN Block, we design a simple and powerful multi-stage network named HINet, which consists of two subnetworks. With the help of HIN Block, HINet surpasses the state-of-the-art (SOTA) on various image restoration tasks. For image denoising, we exceed it 0.11dB and 0.28 dB in PSNR on SIDD dataset, with only 7.5% and 30% of its multiplier-accumulator operations (MACs), 6.8 times and 2.9 times speedup respectively. For image deblurring, we get comparable performance with 22.5% of its MACs and 3.3 times speedup on REDS and GoPro datasets. For image deraining, we exceed it by 0.3 dB in PSNR on the average result of multiple datasets with 1.4 times speedup. With HINet, we won 1st place on the NTIRE 2021 Image Deblurring Challenge - Track2. JPEG Artifacts, with a PSNR of 29.70. The code is available at https://github.com/megvii-model/HINet.
翻译:在本文中,我们探索了在低水平视觉任务中“情况正常化”的作用。具体地说,我们展示了一个新颖的块块:半正常化区(HIN Block),以提高图像恢复网络的性能。在HIN Block的基础上,我们设计了一个简单而强大的多阶段网络,名为HINet,由两个子网络组成。在HIN Block的帮助下,HiNet在各种图像恢复任务方面超过了最先进的(SOTA) 。关于图像淡化,我们在SIDD数据集的PSNR中超过了0.11dB和0.28dB, 其倍集成器操作分别只有7.5%和30%(MACs),6.8倍和2.9倍加速。关于图像淡化,我们得到了22.5%的MACS和3.3倍的性能可比较性能,在REDS和GRO数据集方面,我们比PSNR多数据集的平均结果高出0.3 dB,1.倍。在HINet上,我们赢得了RVERS 2021号TRADADR的1 。