In this paper, we explore the mask representation in instance segmentation with Point-of-Interest (PoI) features. Differentiating multiple potential instances within a single PoI feature is challenging because learning a high-dimensional mask feature for each instance using vanilla convolution demands a heavy computing burden. To address this challenge, we propose an instance-aware convolution. It decomposes this mask representation learning task into two tractable modules as instance-aware weights and instance-agnostic features. The former is to parametrize convolution for producing mask features corresponding to different instances, improving mask learning efficiency by avoiding employing several independent convolutions. Meanwhile, the latter serves as mask templates in a single point. Together, instance-aware mask features are computed by convolving the template with dynamic weights, used for the mask prediction. Along with instance-aware convolution, we propose PointINS, a simple and practical instance segmentation approach, building upon dense one-stage detectors. Through extensive experiments, we evaluated the effectiveness of our framework built upon RetinaNet and FCOS. PointINS in ResNet101 backbone achieves a 38.3 mask mean average precision (mAP) on COCO dataset, outperforming existing point-based methods by a large margin. It gives a comparable performance to the region-based Mask R-CNN with faster inference.


翻译:在本文中,我们探索了隐形表示方式,用利得点(PoI)特征进行实例分解。在单一的PoI特征中,区分多种潜在情况是具有挑战性的,因为使用香草卷卷卷为每个情况学习高维面罩特征需要沉重的计算负担。为了应对这一挑战,我们建议采用一个有真伪的混凝土。将这种隐形表示学习任务分解成两个可移动模块,作为有真伪的重量和例中性分解特征。前者是要对产生与不同情况相对应的面具特征的组合进行平衡,通过避免使用若干独立的相联来提高蒙面学习效率。同时,后者是一个单一点的掩码模板。同时,通过将带有动态权重的模板一起进行计算。我们提出隐形代表学习任务分解成两个可移动模块,作为容积的单点、简单而实用的实例分解方法,在密集的单级探测器的基础上,我们用Retinnet网络和FCOS.PENINS在ResNet101骨架中作为掩模模板,在383中以可比较的平均精确度上,以现有数据为基础,我们评估了我们的框架的有效性。

0
下载
关闭预览

相关内容

专知会员服务
20+阅读 · 2021年7月28日
【CVPR2021】用于目标检测的通用实例蒸馏
专知会员服务
23+阅读 · 2021年3月22日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
专知会员服务
109+阅读 · 2020年3月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Mask R-CNN 论文笔记
统计学习与视觉计算组
11+阅读 · 2018年3月22日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Arxiv
0+阅读 · 2021年9月2日
Arxiv
8+阅读 · 2021年6月1日
Arxiv
6+阅读 · 2018年6月21日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
3+阅读 · 2018年3月5日
VIP会员
相关资讯
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Mask R-CNN 论文笔记
统计学习与视觉计算组
11+阅读 · 2018年3月22日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Top
微信扫码咨询专知VIP会员