Likelihood ratio tests and the Wilks theorems have been pivotal in statistics but have rarely been explored in network models with an increasing dimension. We are concerned here with likelihood ratio tests in the $\beta$-model for undirected graphs. For two growing dimensional null hypotheses including a specified null $H_0: \beta_i=\beta_i^0$ for $i=1,\ldots, r$ and a homogenous null $H_0: \beta_1=\cdots=\beta_r$, we reveal high dimensional Wilks' phenomena that the normalized log-likelihood ratio statistic, $[2\{\ell(\widehat{\boldsymbol{\beta}}) - \ell(\widehat{\boldsymbol{\beta}}^0)\} - r]/(2r)^{1/2}$, converges in distribution to the standard normal distribution as $r$ goes to infinity. Here, $\ell( \boldsymbol{\beta})$ is the log-likelihood function on the vector parameter $\boldsymbol{\beta}=(\beta_1, \ldots, \beta_n)^\top$, $\widehat{\boldsymbol{\beta}}$ is its maximum likelihood estimator (MLE) under the full parameter space, and $\widehat{\boldsymbol{\beta}}^0$ is the restricted MLE under the null parameter space. For the corresponding fixed dimensional null $H_0: \beta_i=\beta_i^0$ for $i=1,\ldots, r$ and the homogenous null $H_0: \beta_1=\cdots=\beta_r$ with a fixed $r$, we establish Wilks type of results that $2\{\ell(\widehat{\boldsymbol{\beta}}) - \ell(\widehat{\boldsymbol{\beta}}^0)\}$ converges in distribution to a Chi-square distribution with respective $r$ and $r-1$ degrees of freedom, as the total number of parameters, $n$, goes to infinity. The Wilks type of results are further extended into a closely related Bradley--Terry model for paired comparisons, where we discover a different phenomenon that the log-likelihood ratio statistic under the fixed dimensional specified null asymptotically follows neither a Chi-square nor a rescaled Chi-square distribution. Simulation studies and an application to NBA data illustrate the theoretical results.
翻译: Lisligy 比例测试和 Wilks orems 在统计中非常关键, 但是在网络模型中却很少探索。 我们在这里关注的是, 在无方向图形的 $\ beta$ 模型中, 可能要测试 。 对于两个不断增长的 维空空虚假设, 包括指定的 n$H_ 0:\ beta_ ibeta_ i% 0; $1, (2r) 1/2美元, 分配到标准正常 $0: $@ beta_ beta_ 美元 美元, 我们揭示高度的 公元 公元 公元现象, 普通的 美元 美元 的 美元 美元 ; 公元 公元的 公元的 美元 美元 ; 公元的 公元的 公元的 美元 ; 公元的 公元的 公元的 ==_ b blormax; 基的 的 数 =xal- bal_ blax 美元 美元; 基的公元的 美元;