This paper deals with the derivation of Non-Intrusive Reduced Basis (NIRB) techniques for sensitivity analysis, more specifically the direct and adjoint state methods. For highly complex parametric problems, these two approaches may become too costly. To reduce computational times, Proper Orthogonal Decomposition (POD) and Reduced Basis Methods (RBMs) have already been investigated. The majority of these algorithms are however intrusive in the sense that the High-Fidelity (HF) code must be modified. To address this issue, non-intrusive strategies are employed. The NIRB two-grid method uses the HF code solely as a ``black-box'', requiring no code modification. Like other RBMs, it is based on an offline-online decomposition. The offline stage is time-consuming, but it is only executed once, whereas the online stage is significantly less expensive than an HF evaluation. In this paper, we propose new NIRB two-grid algorithms for both the direct and adjoint state methods. On the direct method, we prove on a classical model problem, the heat equation, that HF evaluations of sensitivities reach an optimal convergence rate in $L^{\infty}(0,T;H^1(\Omega))$, and then establish that these rates are recovered by the proposed NIRB approximation. These results are supported by numerical simulations. We then numerically demonstrate that a Gaussian process regression can be used to approximate the projection coefficients of the NIRB two-grid method. This further reduces the computational costs of the online step while only computing a coarse solution of the initial problem. All numerical results are run with the model problem as well as a more complex problem, namely the Brusselator system.


翻译:本文涉及敏感度分析的非侵入性降低基准(NIRB)技术的衍生, 更具体地说, 直接和联合状态方法。 对于高度复杂的参数问题, 这两种方法可能会变得太昂贵。 为了减少计算时间, 已经调查了适当的 Orthogonal 分解( POD) 和 降低基础方法( RBM ) 。 然而, 这些算法大多具有侵扰性, 因为必须修改高频( HF) 代码。 为了解决这个问题, 我们采用了非侵入性战略。 NIRB 二格方法仅将高频代码用作“ black-box ” 方法, 不需要修改代码。 与其他成果管理制一样, 以离线性在线分解( PODM ) 和 降低基础方法的分解( RDM ) 。 离线阶段只执行一次, 而在线阶段则比高得多得多。 在本文中, 我们为直接和联合状态方法建议新的NIRB二格算法。 在直接方法上, 我们证明高频值代码的初始值计算法问题,, 以最优的RBILRBRB1 比率计算法为最低比率计算法, 而以最高比率 的数值 的数值计算法则以最高比率 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员