In this paper, we propose a novel and general framework to construct tight framelet systems on graphs with localized supports based on hierarchical partitions. Our construction provides parametrized graph framelet systems with great generality based on partition trees, by which we are able to find the size of a low-dimensional subspace that best fits the low-rank structure of a family of signals. The orthogonal decomposition of subspaces provides a key ingredient for the definition of "generalized vanishing moments" for graph framelets. In a data-adaptive setting, the graph framelet systems can be learned by solving an optimization problem on Stiefel manifolds with respect to our parameterization. Moreover, such graph framelet systems can be further improved by solving a subsequent optimization problem on Stiefel manifolds, aiming at providing the utmost sparsity for a given family of graph signals. Experimental results show that our learned graph framelet systems perform superiorly in non-linear approximation and denoising tasks.
翻译:暂无翻译