Parrondo's paradox was introduced by Juan Parrondo in 1996. In game theory, this paradox is described as: A combination of losing strategies becomes a winning strategy. At first glance, this paradox is quite surprising, but we can easily explain it by using simulations and mathematical arguments. Indeed, we first consider some examples with the Parrondo's paradox and, using the software R, we simulate one of them, the coin tossing. Actually, we see that specific combinations of losing games become a winning game. Moreover, even a random combination of these two losing games leads to a winning game. Later, we introduce the major definitions and theorems over Markov chains to study our Parrondo's paradox applied to the coin tossing problem. In particular, we represent our Parrondo's game as a Markov chain and we find its stationary distribution. In that way, we exhibit that our combination of two losing games is truly a winning combination. We also deliberate possible applications of the paradox in some fields such as ecology, biology, finance or reliability theory.


翻译:Parrondo悖论由Juan Parrondo在1996年提出。在博弈论中,这个悖论被描述为:失败策略的组合变成了一种获胜策略。乍一看,这个悖论很令人惊讶,但是我们可以通过模拟和数学论证来很容易地解释它。我们首先考虑一些Parrondo悖论的例子,并使用软件R来模拟其中之一——抛硬币问题。实际上,我们发现特定的失败游戏组合起来会变成一种获胜游戏。此外,即使是这两个失败游戏的随机组合也会导致一种获胜游戏。之后,我们介绍了马尔科夫链的主要定义和定理,以研究适用于抛硬币问题的Parrondo悖论。特别地,我们将我们的Parrondo游戏表示为一个马尔科夫链,并找到其稳态分布。通过这种方式,我们展示了这两种失败游戏的组合确实是一种获胜的组合。我们还探讨了悖论在生态学、生物学、金融或可靠性理论等领域的可能应用。

0
下载
关闭预览

相关内容

【2023新书】随机模型基础,815页pdf
专知会员服务
102+阅读 · 2023年5月10日
【干货书】工程和科学中的概率和统计,
专知会员服务
58+阅读 · 2022年12月24日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
124+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习初探 - 从多臂老虎机问题说起
专知
10+阅读 · 2018年4月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月26日
VIP会员
相关VIP内容
【2023新书】随机模型基础,815页pdf
专知会员服务
102+阅读 · 2023年5月10日
【干货书】工程和科学中的概率和统计,
专知会员服务
58+阅读 · 2022年12月24日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
124+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习初探 - 从多臂老虎机问题说起
专知
10+阅读 · 2018年4月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员