By enabling the nodes or agents to solve small-sized subproblems to achieve coordination, distributed algorithms are favored by many networked systems for efficient and scalable computation. While for convex problems, substantial distributed algorithms are available, the results for the more broad nonconvex counterparts are extremely lacking. This paper develops a distributed algorithm for a class of nonconvex and nonsmooth problems featured by i) a nonconvex objective formed by both separate and composite objective components regarding the decision components of interconnected agents, ii) local bounded convex constraints, and iii) coupled linear constraints. This problem is directly originated from smart buildings and is also broad in other domains. To provide a distributed algorithm with convergence guarantee, we revise the powerful tool of alternating direction method of multiplier (ADMM) and proposed a proximal ADMM. Specifically, noting that the main difficulty to establish the convergence for the nonconvex and nonsmooth optimization within the ADMM framework is to assume the boundness of dual updates, we propose to update the dual variables in a discounted manner. This leads to the establishment of a so-called sufficiently decreasing and lower bounded Lyapunov function, which is critical to establish the convergence. We prove that the method converges to some approximate stationary points. We besides showcase the efficacy and performance of the method by a numerical example and the concrete application to multi-zone heating, ventilation, and air-conditioning (HVAC) control in smart buildings.


翻译:通过使节点或代理商能够解决小小问题以实现协调,分布式算法得到许多网络化系统的支持,以便高效和可缩进的计算。虽然对于螺旋问题,可以提供大量分布式算法,但对于较广泛的非曲线对应方而言,结果极为缺乏。本文为一类非螺旋和非脉冲问题(一) 一种非螺旋和非脉冲问题(一) 一种非螺旋和非脉冲问题(二) 由关于相互关联的代理人决策组成部分的单独和复合目标组成部分形成的非螺旋目标(二) 当地受约束的螺旋制约(三) 以及线性限制(三) 。这个问题直接来自智能建筑,在其他领域也很广泛。为了提供分布式算法,并有趋同保证,我们修订交错方向的乘法(ADMM)的有力工具,并提出了一种准式的ADMMM。 具体地指出,在ADMM框架内,非螺旋和非脉冲优化的主要困难是假定双向更新的内装,我们提议以折扣方式更新双重变量。这导致建立一个关键的结构的变压式结构。在高压式上建立一个关键的压式系统。我们所的压式的压式的机率的压式的压低的压式的机率。

0
下载
关闭预览

相关内容

南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
78+阅读 · 2022年4月3日
专知会员服务
50+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月19日
VIP会员
相关VIP内容
南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
78+阅读 · 2022年4月3日
专知会员服务
50+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员