As the volume and diversity of available datasets continue to increase, assessing data quality has become crucial for reliable and efficient Machine Learning analytics. A modern, game-theoretic approach for evaluating data quality is the notion of Data Shapley which quantifies the value of individual data points within a dataset. State-of-the-art methods to scale the NP-hard Shapley computation also face severe challenges when applied to large-scale datasets, limiting their practical use. In this work, we present a Data Shapley approach to identify a dataset's high-quality data tuples, Chunked Data Shapley (C-DaSh). C-DaSh scalably divides the dataset into manageable chunks and estimates the contribution of each chunk using optimized subset selection and single-iteration stochastic gradient descent. This approach drastically reduces computation time while preserving high quality results. We empirically benchmark our method on diverse real-world classification and regression tasks, demonstrating that C-DaSh outperforms existing Shapley approximations in both computational efficiency (achieving speedups between 80x - 2300x) and accuracy in detecting low-quality data regions. Our method enables practical measurement of dataset quality on large tabular datasets, supporting both classification and regression pipelines.
翻译:暂无翻译