The Randomized Kaczmarz method (RK) is a stochastic iterative method for solving linear systems that has recently grown in popularity due to its speed and low memory requirement. Selectable Set Randomized Kaczmarz (SSRK) is an variant of RK that leverages existing information about the Kaczmarz iterate to identify an adaptive "selectable set" and thus yields an improved convergence guarantee. In this paper, we propose a general perspective for selectable set approaches and prove a convergence result for that framework. In addition, we define two specific selectable set sampling strategies that have competitive convergence guarantees to those of other variants of RK. One selectable set sampling strategy leverages information about the previous iterate, while the other leverages the orthogonality structure of the problem via the Gramian matrix. We complement our theoretical results with numerical experiments that compare our proposed rules with those existing in the literature.
翻译:Kaczmarz 随机调整法(RK)是解决线性系统的一种随机迭代方法,由于速度和内存要求低,这种方法最近越来越受欢迎。可选择的Set Randiciz Kaczmarz (SSRK) 是RK的变体,它利用关于Kaczmarz 循环的现有信息来确定适应性“可选集 ”,从而产生更好的趋同保证。在本文件中,我们为可选择的一套办法提出了一个总体观点,并证明这一框架的趋同结果。此外,我们定义了两种具体的可选择的成套抽样战略,这些战略具有与RK其他变体的竞争性趋同保证。一个可选择的成套抽样战略利用关于上一个变体的信息,而另一个则利用格拉姆矩阵来利用问题的交错结构。我们用将我们提议的规则与文献中的现有规则进行比较的数值实验来补充我们的理论结果。