项目名称: 非正则典范DC规划问题中的外逼近算法研究

项目编号: No.11201351

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 张青华

作者单位: 武汉大学

项目金额: 22万元

中文摘要: 典范DC规划问题是一类重要的非线性规划问题,其算法在工程、经济和管理等领域中有着广泛应用。典范DC规划领域的全局优化算法一般为外逼近法(或称割平面法)。现有的外逼近算法建立在以正则条件为前提的TUY全局最优性条件基础之上,因此在非正则DC问题中不能保证全局收敛性。本课题将基于申请人给出的适用于所有正则和非正则问题的新型全局最优性条件,结合典范DC规划问题自身特性,设计相应的最优性检验方法以及基于外逼近法和割平面法的全局收敛条件体系和搜索方法,从而构造出可适用于所有正则与非正则问题的外逼近算法,证明其全局收敛性并在部分优化模型中予以实现。本课题研究方法和算法设计思路具有鲜明特色和创新性,是申请人在已有研究基础上具有原创性质的探索,拟构造算法在适用范围上显著优于现有的外逼近算法。课题解决的是DC规划领域的重要难题,其成果对非线性规划领域的研究有着重要的理论价值和实际意义。

中文关键词: 全局优化;典范 DC 规划;外逼近算法;正则条件;割平面算法

英文摘要: Canonical DC programs is one important class of nonlinear programming problems, and their algorithms have many practical and theoretical applications in engineering, economics, management and other fields. The global optimization algorithms for canonical DC programs are usually outer approximation algorithms (conjunctive cutting plane algorithms). However, the existing outer approximation algorithms are based on Tuy's optimality condition, which is only applicable to regular canonical DC programs. Therefore, the existing algorithm can not guarantee global convergence in non-regular DC instances. The proposed algorithm will be based on applicant's new necessary and sufficient global optimality condition, and utilize the special structural property of canonical DC programs. Then the project will propose a procedure to check the global optimality condition and build an outer approximation algorithmic framework. Finally, the project will establish a novel outer approximation algorithm that can be applied to solving all regular and non-regular canonical DC problems, and implement it in some well-known mathematical models. The research methodology is innovative and exploratory, and the topic of the project is a major challenge in DC programming fields. The result would be of theorectical significance and practical v

英文关键词: global optimization;canonical DC programs;outer approximation algorithm;regularity condition;cutting plane algorithm

成为VIP会员查看完整内容
0

相关内容

【CVPR2022】整合少样本学习的分类和分割
专知会员服务
28+阅读 · 2022年3月31日
迁移学习方法在医学图像领域的应用综述
专知会员服务
60+阅读 · 2022年1月6日
专知会员服务
41+阅读 · 2021年2月12日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
109+阅读 · 2020年12月18日
专知会员服务
74+阅读 · 2020年12月7日
【斯坦福大学】矩阵对策的协调方法,89页pdf
专知会员服务
26+阅读 · 2020年9月18日
专知会员服务
20+阅读 · 2020年9月2日
工作几年了,还没成为“算法人上人”?
PaperWeekly
1+阅读 · 2022年1月14日
深度梳理这10个国家的AI发展战略
学术头条
4+阅读 · 2021年11月28日
【优博微展2019】李志泽:简单快速的机器学习优化方法
清华大学研究生教育
14+阅读 · 2019年10月8日
腊月廿八 | 强化学习-TRPO和PPO背后的数学
AI研习社
17+阅读 · 2019年2月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月17日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
小贴士
相关主题
相关VIP内容
【CVPR2022】整合少样本学习的分类和分割
专知会员服务
28+阅读 · 2022年3月31日
迁移学习方法在医学图像领域的应用综述
专知会员服务
60+阅读 · 2022年1月6日
专知会员服务
41+阅读 · 2021年2月12日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
109+阅读 · 2020年12月18日
专知会员服务
74+阅读 · 2020年12月7日
【斯坦福大学】矩阵对策的协调方法,89页pdf
专知会员服务
26+阅读 · 2020年9月18日
专知会员服务
20+阅读 · 2020年9月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员