We study a fundamental transfer learning process from source to target linear regression tasks, including overparameterized settings where there are more learned parameters than data samples. The target task learning is addressed by using its training data together with the parameters previously computed for the source task. We define a transfer learning approach to the target task as a linear regression optimization with a regularization on the distance between the to-be-learned target parameters and the already-learned source parameters. We analytically characterize the generalization performance of our transfer learning approach and demonstrate its ability to resolve the peak in generalization errors in double descent phenomena of the minimum L2-norm solution to linear regression. Moreover, we show that for sufficiently related tasks, the optimally tuned transfer learning approach can outperform the optimally tuned ridge regression method, even when the true parameter vector conforms to an isotropic Gaussian prior distribution. Namely, we demonstrate that transfer learning can beat the minimum mean square error (MMSE) solution of the independent target task. Our results emphasize the ability of transfer learning to extend the solution space to the target task and, by that, to have an improved MMSE solution. We formulate the linear MMSE solution to our transfer learning setting and point out its key differences from the common design philosophy to transfer learning.
翻译:暂无翻译