Learning with graphs has attracted significant attention recently. Existing representation learning methods on graphs have achieved state-of-the-art performance on various graph-related tasks such as node classification, link prediction, etc. However, we observe that these methods could leak serious private information. For instance, one can accurately infer the links (or node identity) in a graph from a node classifier (or link predictor) trained on the learnt node representations by existing methods. To address the issue, we propose a privacy-preserving representation learning framework on graphs from the \emph{mutual information} perspective. Specifically, our framework includes a primary learning task and a privacy protection task, and we consider node classification and link prediction as the two tasks of interest. Our goal is to learn node representations such that they can be used to achieve high performance for the primary learning task, while obtaining performance for the privacy protection task close to random guessing. We formally formulate our goal via mutual information objectives. However, it is intractable to compute mutual information in practice. Then, we derive tractable variational bounds for the mutual information terms, where each bound can be parameterized via a neural network. Next, we train these parameterized neural networks to approximate the true mutual information and learn privacy-preserving node representations. We finally evaluate our framework on various graph datasets.


翻译:图表上的现有代表学习方法在节点分类、链接预测等各种与图表有关的任务中取得了最先进的表现。然而,我们发现,这些方法可能会泄露严重的私人信息。例如,我们可以准确地从一个节点分类(或链接预测器)中推断出在图表中的链接(或节点身份),这些链接(或节点身份)是通过现有方法获得的节点表示方法培训的。为了解决这个问题,我们提议了一个隐私保留代表学习框架。具体地说,我们的框架包括一个主要的学习任务和隐私保护任务,我们认为,将节点分类和预测作为两项感兴趣的任务。我们的目标是从一个节点分类(或链接预测器)中准确地推断出在图表中的链接(或节点身份),以便用来实现初级学习任务的高性能,同时获得隐私保护任务的接近于随机猜测。我们通过相互信息目标正式制定我们的目标。然而,在实践中对相互信息进行校正是难以操作的。然后,我们为相互信息术语绘制可移动的变形框框,其中每个节点分类都是通过神经网络来测量我们的精确度。我们最后通过这些矩阵对各种图层图层图表进行测量。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
12+阅读 · 2021年7月26日
Arxiv
4+阅读 · 2020年11月20日
Arxiv
7+阅读 · 2019年5月31日
Arxiv
3+阅读 · 2018年4月10日
VIP会员
相关VIP内容
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员