With the growing competition in banking industry, banks are required to follow customer retention strategies while they are trying to increase their market share by acquiring new customers. This study compares the performance of six supervised classification techniques to suggest an efficient model to predict customer churn in banking industry, given 10 demographic and personal attributes from 10000 customers of European banks. The effect of feature selection, class imbalance, and outliers will be discussed for ANN and random forest as the two competing models. As shown, unlike random forest, ANN does not reveal any serious concern regarding overfitting and is also robust to noise. Therefore, ANN structure with five nodes in a single hidden layer is recognized as the best performing classifier.
翻译:随着银行业日益激烈的竞争,银行在试图通过收购新客户来增加市场份额的同时,必须遵循客户保留战略,将六种监督分类技术的绩效进行比较,以提出一种有效的模型来预测银行业的客户数量,因为有10 000名欧洲银行客户提供了10个人口和个人属性。 将讨论非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非