The rapid development of high-throughput technologies has enabled the generation of data from biological or disease processes that span multiple layers, like genomic, proteomic or metabolomic data, and further pertain to multiple sources, like disease subtypes or experimental conditions. In this work, we propose a general statistical framework based on Gaussian graphical models for horizontal (i.e. across conditions or subtypes) and vertical (i.e. across different layers containing data on molecular compartments) integration of information in such datasets. We start with decomposing the multi-layer problem into a series of two-layer problems. For each two-layer problem, we model the outcomes at a node in the lower layer as dependent on those of other nodes in that layer, as well as all nodes in the upper layer. We use a combination of neighborhood selection and group-penalized regression to obtain sparse estimates of all model parameters. Following this, we develop a debiasing technique and asymptotic distributions of inter-layer directed edge weights that utilize already computed neighborhood selection coefficients for nodes in the upper layer. Subsequently, we establish global and simultaneous testing procedures for these edge weights. Performance of the proposed methodology is evaluated on synthetic and real data.


翻译:高通量技术的迅速发展使得能够从生物或疾病过程生成数据,这些过程跨越多层,例如基因组、蛋白质组或代谢数据,并且进一步涉及多种来源,例如疾病亚型或实验条件。在这项工作中,我们提议了一个基于高斯图形模型的总体统计框架,用于横向(即跨条件或亚型)和垂直(即跨包含分子间隔数据的不同层)整合此类数据集中的信息。我们从将多层问题分解成一系列两层问题开始。对于每一个两层问题,我们将低层节点的结果建模为取决于该层中其他节点的结果,以及上层的所有节点。我们使用邻里选择和组化回归的组合,以获得所有模型参数的稀疏估计数。之后,我们开发了一种降低偏差的技术,将跨层定向边缘重量分布分解成一系列的两层问题。对于每个两层问题,我们用低层节点的节点的节点将结果建模作为模型的模型,而后,我们用已计算好的邻里选择系数来进行合成水平的同步测试。我们随后对这些数据和合成水平的同步评估。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
47+阅读 · 2021年1月20日
【干货书】机器学习速查手册,135页pdf
专知会员服务
123+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
241+阅读 · 2020年4月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Probability Estimation of Uncertain Process Traces
Arxiv
0+阅读 · 2021年8月19日
Arxiv
0+阅读 · 2021年8月18日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员