Learning expressive representation is crucial in deep learning. In speech emotion recognition (SER), vacuum regions or noises in the speech interfere with expressive representation learning. However, traditional RNN-based models are susceptible to such noise. Recently, Graph Neural Network (GNN) has demonstrated its effectiveness for representation learning, and we adopt this framework for SER. In particular, we propose a cosine similarity-based graph as an ideal graph structure for representation learning in SER. We present a Cosine similarity-based Graph Convolutional Network (CoGCN) that is robust to perturbation and noise. Experimental results show that our method outperforms state-of-the-art methods or provides competitive results with a significant model size reduction with only 1/30 parameters.
翻译:在深层学习中,学习的表达方式至关重要。在语音情感识别(SER)中,真空区域或语言中的噪音干扰了表达方式的学习。然而,传统的基于RNN的模型很容易受到这种噪音的影响。最近,图形神经网络(GNN)展示了它在代表性学习方面的有效性,我们为SER采用了这个框架。特别是,我们提出了一个基于共生相似性的图表,作为SER的代表学习的理想图表结构。我们提出了一个基于Cosine的基于相似性的图表革命网络(CoGCN),这个网络对扰动和噪音非常强大。实验结果显示,我们的方法超越了最先进的方法,或者提供了具有竞争力的结果,只有1/30参数的显著模型规模缩小。