The higher-dimensional version of Kannan and Lipton's Orbit Problem asks whether it is decidable if a target vector space can be reached from a starting point under repeated application of a linear transformation. This problem has remained open since its formulation, and in fact generalizes Skolem's Problem -- a long-standing open problem concerning the existence of zeros in linear recurrence sequences. Both problems have traditionally been studied using algebraic and number theoretic machinery. In contrast, this paper reduces the Orbit Problem to an equivalent version in real projective space, introducing a basic geometric reference for examining and deciding problem instances. We find this geometric toolkit enables basic proofs of sweeping assertions concerning the decidability of certain problem classes, including results where the only other known proofs rely on sophisticated number-theoretic arguments.
翻译:暂无翻译