In this paper, we consider the problem of deciding the existence of real solutions to a system of polynomial equations having real coefficients, and which are invariant under the action of the symmetric group. We construct and analyze a Monte Carlo probabilistic algorithm which solves this problem, under some regularity assumptions on the input, by taking advantage of the symmetry invariance property. The complexity of our algorithm is polynomial in $d^s, {{n+d} \choose d}$, and ${{n} \choose {s+1}}$, where $n$ is the number of variables and $d$ is the maximal degree of $s$ input polynomials defining the real algebraic set under study. In particular, this complexity is polynomial in $n$ when $d$ and $s$ are fixed and is equal to $n^{O(1)}2^n$ when $d=n$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年7月28日
Arxiv
0+阅读 · 2023年7月27日
VIP会员
相关VIP内容
专知会员服务
45+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员