Recent studies on Knowledge Base Question Answering (KBQA) have shown great progress on this task via better question understanding. Previous works for encoding questions mainly focus on the word sequences, but seldom consider the information from syntactic trees.In this paper, we propose an approach to learn syntax-based representations for KBQA. First, we encode path-based syntax by considering the shortest dependency paths between keywords. Then, we propose two encoding strategies to mode the information of whole syntactic trees to obtain tree-based syntax. Finally, we combine both path-based and tree-based syntax representations for KBQA. We conduct extensive experiments on a widely used benchmark dataset and the experimental results show that our syntax-aware systems can make full use of syntax information in different settings and achieve state-of-the-art performance of KBQA.
翻译:最近关于知识基础问题解答的研究(KBQA)显示,通过更好地理解问题,在这项任务上取得了巨大进展。以前的编码问题工作主要侧重于字序列,但很少考虑来自合成树的信息。在本文件中,我们建议了一种方法来学习KBQA基于语法的表达方式。首先,我们通过考虑关键词之间最短的依赖路径来编码基于路径的语法。然后,我们建议了两种编码战略来模式整个合成树的信息,以获得基于树的语法。最后,我们把KBQA的基于路径的和基于树的语法表达方式结合起来。我们对广泛使用的基准数据集进行了广泛的实验,实验结果显示,我们的通税系统可以在不同环境中充分利用语法信息,并实现KBQA的最新表现。