I propose a new type of confidence interval for correct asymptotic inference after using data to select a model of interest without assuming any model is correctly specified. This hybrid confidence interval is constructed by combining techniques from the selective inference and post-selection inference literatures to yield a short confidence interval across a wide range of data realizations. I show that hybrid confidence intervals have correct asymptotic coverage, uniformly over a large class of probability distributions that do not bound scaled model parameters. I illustrate the use of these confidence intervals in the problem of inference after using the LASSO objective function to select a regression model of interest and provide evidence of their desirable length and coverage properties in small samples via a set of Monte Carlo experiments that entail a variety of different data distributions as well as an empirical application to the predictors of diabetes disease progression.
翻译:我提议在使用数据选择一种利益模式而不假定任何模式正确的情况下,采用新的信任区间,以进行正确的无损推断。这种混合信任区间是结合选择性推断和选后推断文献的技术来构建的,以产生一个短的信任区间,覆盖广泛的数据。我表明,混合信任区有正确的无损区间,统一覆盖不限制规模模型参数的大量概率分布。我举例说明在使用LASSO目标功能来选择利害回归模型之后,在推断问题时使用这些信任区间,并通过一套蒙特卡洛实验,提供证据,说明其可取的长度和覆盖性,这些实验涉及各种不同的数据分布以及对糖尿病疾病发展预测者的经验应用。