Out-of-bag error is commonly used as an estimate of generalisation error in ensemble-based learning models such as random forests. We present confidence intervals for this quantity using the delta-method-after-bootstrap and the jackknife-after-bootstrap techniques. These methods do not require growing any additional trees. We show that these new confidence intervals have improved coverage properties over the naive confidence interval, in real and simulated examples.
翻译:包外错误通常用来作为随机森林等混合学习模型中一般误差的估计。我们使用三角洲-方法后装置和竹刀后装置技术对这一数量表示信任间隔。这些方法不需要种植更多的树木。我们发现,这些新的信任间隔在天真的置信间隔、真实例子和模拟例子中提高了覆盖性。