Logistic linear mixed model (LLMM) is one of the most widely used statistical models. Generally, Markov chain Monte Carlo algorithms are used to explore the posterior densities associated with Bayesian LLMMs. Polson, Scott and Windle's (2013) Polya-Gamma data augmentation (DA) technique can be used to construct full Gibbs (FG) samplers for LLMMs. Here, we develop efficient block Gibbs (BG) samplers for Bayesian LLMMs using the Polya-Gamma DA method. We compare the FG and BG samplers in the context of simulated and real data examples as the correlation between the fixed and random effects changes as well as when the dimensions of the design matrices vary. These numerical examples demonstrate superior performance of the BG samplers over the FG samplers. We also derive conditions guaranteeing geometric ergodicity of the BG Markov chain when the popular improper uniform prior is assigned on the regression coefficients and proper or improper priors are placed on the variance parameters of the random effects. This theoretical result has important practical implications as it justifies the use of asymptotically valid Monte Carlo standard errors for Markov chain based estimates of posterior quantities.
翻译:物流线性混合模型(LLMM)是最广泛使用的统计模型之一。一般而言,使用Markov链链Monte Carlo算法来探索与Bayesian LMMLMs有关的后方密度。Polson、Scott和Windle的Polica-Gamma数据增强(DA)技术可以用来为LMMMs建造完整的Gibbs(FG)取样器。在这里,我们利用Polila-Gamma DA方法为Bayesian LMs开发了高效的Gibs(BG)取样器。我们用模拟和真实数据示例来比较FG和BG样本,作为固定效应变化和随机效应变化以及设计矩阵各维度之间的相关关系。这些数字示例显示了BG样本比FG样本的优异性性。我们还得出了保证BG Markov 链 的地理测量质量的条件,因为以前流行的不适当或不适当的前题是随机效应的差异参数。这一理论结果具有重要的实际影响,因为它可以证明使用基于模拟的峰值的模型的模型误差值。