In this paper, we prove several new results that give new insights into bilinear systems. We discuss conditions for asymptotic stability using probabilistic arguments. Moreover, we provide a global characterization of reachability in bilinear systems based on a certain Gramian. Reachability energy estimates using the same Gramian have only been local so far. The main result of this paper, however, is a new link between the output error and the $\mathcal H_2$-error of two bilinear systems. This result has several consequences in the field of model order reduction. It explains why $\mathcal H_2$-optimal model order reduction leads to good approximations in terms of the output error. Moreover, output errors based on the $\mathcal H_2$-norm can now be proved for balancing related model order reduction schemes in this paper. All these new results are based on a Gronwall lemma for matrix differential equations that is established here.
翻译:在本文中, 我们证明了若干新结果, 给双线系统带来新的洞察力。 我们用概率论来讨论无症状稳定性的条件。 此外, 我们提供基于特定格莱米语的双线系统可达性全球特征。 使用同一格莱米语的可达性能源估算目前只是局部的。 但是, 本文的主要结果却是输出错误与两个双线系统$\ mathcal H_ 2$- error 之间的新联系。 这个结果在减少命令模型方面产生了若干后果 。 它解释了为什么 $mathcal H_ 2$- 最佳模式的减少导致产出错误的近似值。 此外, 以 $mathcal H_ 2$- nonorm 为基础的输出错误现在可以证明能够平衡本文中相关的模式订单削减计划。 所有这些新结果都基于此处建立的矩阵差异方程式的Gronwall lemma。