We propose a computationally efficient method to construct nonparametric, heteroskedastic prediction bands for uncertainty quantification, with or without any user-specified predictive model. The data-adaptive prediction band is universally applicable with minimal distributional assumptions, with strong non-asymptotic coverage properties, and easy to implement using standard convex programs. Our approach can be viewed as a novel variance interpolation with confidence and further leverages techniques from semi-definite programming and sum-of-squares optimization. Theoretical and numerical performances for the proposed approach for uncertainty quantification are analyzed.
翻译:我们建议了一种计算效率高的方法,用于构建非参数性、有冷心的预测频带,以量化不确定性,无论是否使用用户指定的预测模型。 数据适应性预测频带在最低分布假设下普遍适用,具有很强的非同步覆盖特性,并且易于使用标准的共性程序。 我们的方法可以被视为一种具有信心的新的差异互换,并且从半定式编程和平方平方平方平方平方平方平方平整中得到进一步的杠杆技术。 对拟议的不确定性量化方法的理论和数字性能进行了分析。