Assigning weights to a large pool of objects is a fundamental task in a wide variety of applications. In this article, we introduce a concept of structured high-dimensional probability simplexes, whose most components are zero or near zero and the remaining ones are close to each other. Such structure is well motivated by 1) high-dimensional weights that are common in modern applications, and 2) ubiquitous examples in which equal weights -- despite their simplicity -- often achieve favorable or even state-of-the-art predictive performances. This particular structure, however, presents unique challenges both computationally and statistically. To address these challenges, we propose a new class of double spike Dirichlet priors to shrink a probability simplex to one with the desired structure. When applied to ensemble learning, such priors lead to a Bayesian method for structured high-dimensional ensembles that is useful for forecast combination and improving random forests, while enabling uncertainty quantification. We design efficient Markov chain Monte Carlo algorithms for easy implementation. Posterior contraction rates are established to provide theoretical support. We demonstrate the wide applicability and competitive performance of the proposed methods through simulations and two real data applications using the European Central Bank Survey of Professional Forecasters dataset and a UCI dataset.


翻译:向大量天体分配权重是多种应用中的一项基本任务。 在本条中,我们引入了结构化高维概率简单化概念,其大多数组成部分为零或接近零,其余部分彼此接近。这种结构的动机是:(1) 现代应用中常见的高维重量,和(2) 各种无处不在的例子,其中等量 -- -- 尽管它们简单 -- -- 往往能够取得有利的甚至最先进的预测性能。然而,这一特殊结构在计算和统计两方面都提出了独特的挑战。为了应对这些挑战,我们提议了一个新的双倍加注Drichlet类别,在将概率简单化的概率缩到与预期结构相近的一级之前,我们建议采用一个新的类别。在应用这种结构的高度重量化加权式学习时,这种前期导致一种贝伊斯法,用于预测组合和改进随机森林,同时能够对不确定性进行量化。我们设计高效的Markov连锁蒙特卡洛算法,以便于实施。我们建立了离子收缩率,以提供理论支持。我们通过模拟和两个数据银行,我们展示了拟议的中央评估方法的专业性和竞争性表现。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
44+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月26日
Arxiv
0+阅读 · 2021年5月21日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
44+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员