Adversarial Transferability is an intriguing property of adversarial examples -- a perturbation that is crafted against one model is also effective against another model, which may arise from a different model family or training process. To better protect ML systems against adversarial attacks, several questions are raised: what are the sufficient conditions for adversarial transferability? Is it possible to bound such transferability? Is there a way to reduce the transferability in order to improve the robustness of an ensemble ML model? To answer these questions, we first theoretically analyze sufficient conditions for transferability between models and propose a practical algorithm to reduce transferability within an ensemble to improve its robustness. Our theoretical analysis shows only the orthogonality between gradients of different models is not enough to ensure low adversarial transferability: the model smoothness is also an important factor. In particular, we provide a lower/upper bound of adversarial transferability based on model gradient similarity for low risk classifiers based on gradient orthogonality and model smoothness. We demonstrate that under the condition of gradient orthogonality, smoother classifiers will guarantee lower adversarial transferability. Furthermore, we propose an effective Transferability Reduced Smooth-ensemble(TRS) training strategy to train a robust ensemble with low transferability by enforcing model smoothness and gradient orthogonality between base models. We conduct extensive experiments on TRS by comparing with other state-of-the-art baselines on different datasets, showing that the proposed TRS outperforms all baselines significantly. We believe our analysis on adversarial transferability will inspire future research towards developing robust ML models taking these adversarial transferability properties into account.


翻译:Adversarial Transability 是对抗性模型的一个令人羡慕的属性 -- -- 一种针对一个模型的扰动性能对于另一个模型也是有效的,而另一种模型也可能是不同的模型家庭或培训过程产生的。为了更好地保护 ML 系统免遭对抗性攻击,我们提出了几个问题:对抗性转移的足够条件是什么?能否约束这种可转移性?是否有办法降低可转移性,以便提高混合 ML 模型的稳健性能?为了回答这些问题,我们首先从理论上分析模型之间可转移的充足条件,并提议一种实用的算法,以减少在一种混合性基数中可转移性,以提高其稳健性。我们的理论分析只显示不同模型之间的梯度或度,不足以确保低对抗性转移性能;模型的平稳性能也是一个重要因素。特别是,我们根据模型梯度模型的基数,为基于梯度或测值和模型的低风险归正性(Weurity translationality) 提供了一种较低的可转移性能约束性,我们展示了在易变性或易变性变易性模型中的可变性研究,, 和易变性变性数据转换性分析战略将保证我们通过低易性能、低性能、低性能、低性能、低性能、低性能、低性能、低性能、低性能性能性能、低性能、低性能、高性能、低性能、低性能、低性能、低性能、低性能、低性能、低性能、低性能、低性能、低性能、低性能、低性能、低性能、低性能、低性能、低性能、低性能、低性能、低性能、低性能、低性能、低性能、低性能、低性能、低性能、低性能、低性能、低性能、低性能、性能、低性能、低性能、低性能、低性能、低能、低性能、低性能、低性能、低性能、低性能、低性能、低性能、低性能、低性能、低性能、低性能、低性能、低性能、

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
44+阅读 · 2020年10月31日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月27日
Arxiv
5+阅读 · 2018年4月22日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
专知会员服务
14+阅读 · 2021年5月21日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
44+阅读 · 2020年10月31日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员