Metaverse has stretched the real world into unlimited space. There will be more live concerts in Metaverse. The task of singer identification is to identify the song belongs to which singer. However, there has been a tough problem in singer identification, which is the different live effects. The studio version is different from the live version, the data distribution of the training set and the test set are different, and the performance of the classifier decreases. This paper proposes the use of the domain adaptation method to solve the live effect in singer identification. Three methods of domain adaptation combined with Convolutional Recurrent Neural Network (CRNN) are designed, which are Maximum Mean Discrepancy (MMD), gradient reversal (Revgrad), and Contrastive Adaptation Network (CAN). MMD is a distance-based method, which adds domain loss. Revgrad is based on the idea that learned features can represent different domain samples. CAN is based on class adaptation, it takes into account the correspondence between the categories of the source domain and target domain. Experimental results on the public dataset of Artist20 show that CRNN-MMD leads to an improvement over the baseline CRNN by 0.14. The CRNN-RevGrad outperforms the baseline by 0.21. The CRNN-CAN achieved state of the art with the F1 measure value of 0.83 on album split.
翻译:元数据已经将真实世界拉入无限的空间。 在 Meteveve 中, 将有更多的现场音乐会。 歌手识别的任务是识别歌唱属于哪个歌手的歌曲。 然而, 歌唱识别存在一个棘手的问题, 这是不同的现场效果。 演播室版本与现场版本不同, 培训组和测试组的数据分布不同, 分类器的性能也不同。 本文建议使用域适应方法来解决歌唱识别中的现场效果。 与 Convolual Compular Republical Neural网络( CRNNNN20) 相结合的三种域适应方法是设计出来的, 这三种方法是最大平均值差异( MMD)、 梯度逆转(Revgrad) 和对比性适应网络( CANNW ) 。 MMD是一个基于远程的方法, 增加了域损失。 校验基于学习的特征可以代表不同域样的理念。 校验基于等级适应, 考虑源域与目标域域域的类别之间的对应关系。 艺术家20 公共数据集的实验结果显示, CNNNN- MMDMD 导致CNNNN 基线的改进了0.14的C- NRC- gRADR标准值。