The effectiveness of unsupervised domain adaptation degrades when there is a large discrepancy between the source and target domains. Gradual domain adaptation (GDA) is one promising way to mitigate such an issue, by leveraging additional unlabeled data that gradually shift from the source to the target. Through sequentially adapting the model along the "indexed" intermediate domains, GDA substantially improves the overall adaptation performance. In practice, however, the extra unlabeled data may not be separated into intermediate domains and indexed properly, limiting the applicability of GDA. In this paper, we investigate how to discover the sequence of intermediate domains when it is not already available. Concretely, we propose a coarse-to-fine framework, which starts with a coarse domain discovery step via progressive domain discriminator training. This coarse domain sequence then undergoes a fine indexing step via a novel cycle-consistency loss, which encourages the next intermediate domain to preserve sufficient discriminative knowledge of the current intermediate domain. The resulting domain sequence can then be used by a GDA algorithm. On benchmark data sets of GDA, we show that our approach, which we name Intermediate DOmain Labeler (IDOL), can lead to comparable or even better adaptation performance compared to the pre-defined domain sequence, making GDA more applicable and robust to the quality of domain sequences. Codes are available at https://github.com/hongyouc/IDOL.
翻译:在源域和目标域之间存在巨大差异的情况下,未经监督的域适应的有效性会降低。 渐变域适应( GDA) 是缓解这一问题的一个有希望的方法, 办法是利用从源域向目标逐渐转移的额外无标签数据。 通过沿“ 索引” 中间域对模型进行顺序调整, GDA 大大改进了总体适应性能。 然而, 在实践上, 额外的无标签数据可能无法分离成中间域, 并适当地进行索引化, 从而限制 GDA 的适用性。 在本文中, 我们调查如何在尚未找到中间域序列时发现它。 具体地说, 我们建议了一个粗化至线框架, 以通过渐进域区分培训开始的粗化域发现步骤开始。 这个粗略的域序列随后通过新的循环一致性损失进行细微的索引化步骤, 从而鼓励下一个中间域保持对当前中间域的充分歧视性知识, 从而可以使用GDADA 算法。 在GDA 基准数据集方面, 我们展示了我们的方法, 我们把中间的 DOM / 质量 的系统 改为可比较性域域域内 。