High energy physics experiments rely heavily on the detailed detector simulation models in many tasks. Running these detailed models typically requires a notable amount of the computing time available to the experiments. In this work, we demonstrate a new approach to speed up the simulation of the Time Projection Chamber tracker of the MPD experiment at the NICA accelerator complex. Our method is based on a Generative Adversarial Network - a deep learning technique allowing for implicit estimation of the population distribution for a given set of objects. This approach lets us learn and then sample from the distribution of raw detector responses, conditioned on the parameters of the charged particle tracks. To evaluate the quality of the proposed model, we integrate a prototype into the MPD software stack and demonstrate that it produces high-quality events similar to the detailed simulator, with a speed-up of at least an order of magnitude. The prototype is trained on the responses from the inner part of the detector and, once expanded to the full detector, should be ready for use in physics tasks.
翻译:高能物理实验在许多任务中严重依赖详细的探测器模拟模型。 运行这些详细模型通常需要相当长的计算时间。 在这项工作中,我们展示了一种新方法来加速模拟NICA加速器综合体中MPD实验的时间投影室跟踪器的模拟。 我们的方法基于一个基因反向网络,这是一种深层次的学习技术,可以对特定成套物体的人口分布进行隐性估计。 这种方法让我们学习原始探测器反应分布的样本,然后以充电粒子轨道的参数为条件。 为了评估所提议模型的质量,我们将一个原型纳入MPD软件堆,并证明它产生与详细模拟器相似的高质量事件,其速度至少达到一定的量级。 原型在探测器内部进行反应培训,一旦扩大到全部探测器,就应准备用于物理任务。