Multinomial probit (mnp) models are fundamental and widely-applied regression models for categorical data. Fasano and Durante (2022) proved that the class of unified skew-normal distributions is conjugate to several mnp sampling models. This allows to develop Monte Carlo samplers and accurate variational methods to perform Bayesian inference. In this paper, we adapt the abovementioned results for a popular special case: the discrete-choice mnp model under zero mean and independent Gaussian priors. This allows to obtain simplified expressions for the parameters of the posterior distribution and an alternative derivation for the variational algorithm that gives a novel understanding of the fundamental results in Fasano and Durante (2022) as well as computational advantages in our special settings.
翻译:多角度Probit (mnp) 模型是绝对数据的基本和广泛应用的回归模型。 Fasano 和 Durante (2022年) 证明, 统一的 skew-正常分布等级与多个 mnp 抽样模型相提并论。 这样可以开发Monte Carlo 取样器和精确的变异方法来进行Bayesian 推断。 在本文中, 我们对上述结果进行调整, 以适应一个流行的特例: 零度和独立的Gaussian 之前的离散选择 mnp 模型。 这可以获取后方分布参数的简化表达方式, 以及变异算法的替代衍生法, 使大家重新理解Fasano 和 Durante (2022年) 的基本结果以及我们特殊环境中的计算优势 。