The principal diffusion directions are one of the most important statistics derived from diffusion tensor imaging (DTI). It is directional data that depict the anatomical structures of brain tissues. However, only a few approaches are available for covariate-dependent statistical modeling of principal diffusion directions. We thus propose a novel spatial autoregressive model by assuming that the principal diffusion directions are von-Mises Fisher (vMF) distributed directional data. Using a novel link function relying on transformation between Cartesian coordinates and spherical coordinates, we regress the vMF distributed principal diffusion directions on the subject's covariates, measuring how the clinical factors affect the anatomical structures. The spatial residual dependence along fibers is captured by an autoregressive model. Key statistical properties of the model and a comprehensive toolbox for Bayesian inference of the directional data with applications to medical imaging analysis are thoroughly developed. The numerical studies based on synthetic data demonstrate that our model has more accurate estimation of the effects of clinical factors. Applying our regression model to the Alzheimer's Disease Neuroimaging Initiative (ADNI) data, we obtain new insights.


翻译:主要扩散方向是来自散射高射成像(DTI)的最重要统计数据之一。这是描述脑组织解剖结构的方向数据。然而,对于主要扩散方向的共变统计模型,我们只有几种方法可供使用。因此,我们提出一个新的空间自动递减模型,假设主要扩散方向是冯-米谢斯·费舍尔(VMF)分布方向数据。我们利用依赖喀尔泰西亚坐标和球形坐标之间转换的新颖联系功能,在主题的共变体上反转 vMF 分布的主要扩散方向,测量临床因素对解剖结构的影响。在纤维上的空间剩余依赖由一种自动递减模型捕捉取。模型的关键统计特性和巴伊西亚人推断方向数据应用医学成像分析的综合工具箱已经得到彻底开发。基于合成数据进行的数字研究表明,我们模型对临床因素的影响有更准确的估计。我们将回归模型应用于阿尔茨海默氏病神经成像化倡议(ADNI)的数据,我们获得了新的洞察力。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月10日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关VIP内容
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员