This paper analyzes a full discretization of a three-dimensional stochastic Allen-Cahn equation with multiplicative noise. The discretization combines the Euler scheme for temporal approximation and the finite element method for spatial approximation. A pathwise uniform convergence rate is derived, encompassing general spatial \( L^q \)-norms, by using discrete versions of deterministic and stochastic maximal \( L^p \)-regularity estimates. Additionally, the theoretical convergence rate is validated through numerical experiments. The primary contribution of this work is the introduction of a technique to establish the pathwise uniform convergence of finite element-based full discretizations for nonlinear stochastic parabolic equations within the framework of general spatial \( L^q \)-norms.
翻译:暂无翻译