We consider the problem of black-box function optimization over the boolean hypercube. Despite the vast literature on black-box function optimization over continuous domains, not much attention has been paid to learning models for optimization over combinatorial domains until recently. However, the computational complexity of the recently devised algorithms are prohibitive even for moderate numbers of variables; drawing one sample using the existing algorithms is more expensive than a function evaluation for many black-box functions of interest. To address this problem, we propose a computationally efficient model learning algorithm based on multilinear polynomials and exponential weight updates. In the proposed algorithm, we alternate between simulated annealing with respect to the current polynomial representation and updating the weights using monomial experts' advice. Numerical experiments on various datasets in both unconstrained and sum-constrained boolean optimization indicate the competitive performance of the proposed algorithm, while improving the computational time up to several orders of magnitude compared to state-of-the-art algorithms in the literature.
翻译:我们考虑的是在布林超立方体上优化黑盒功能的问题。 尽管在连续域上优化黑盒功能的文献繁多, 但直到最近,还没有多少关注到在组合域上优化黑盒功能的学习模式。 然而,最近设计的算法的计算复杂性甚至对于中等数量的变量来说都令人望而却步; 使用现有算法抽取一个样本比对许多感兴趣的黑盒函数进行函数评估要昂贵。 为了解决这个问题, 我们提议了一种基于多线多义多元数和指数重量更新的计算效率高的模型学习算法。 在拟议的算法中,我们在模拟多面体表示法时进行模拟肛门转换,并利用单一的医学专家建议更新重量。 在未加控制且加总调的布尔优化中,对各种数据集进行的数字实验表明了拟议的算法的竞争性性表现,同时将计算时间提高到数个数量级,与文献中的最新算法相比。