Modeling unknown systems from data is a precursor of system optimization and sequential decision making. In this paper, we focus on learning a Markov model from a single trajectory of states. Suppose that the transition model has a small rank despite of having a large state space, meaning that the system admits a low-dimensional latent structure. We show that one can estimate the full transition model accurately using a trajectory of length that is proportional to the total number of states. We propose two maximum likelihood estimation methods: a convex approach with nuclear-norm regularization and a nonconvex approach with rank constraint. We explicitly derive the statistical rates of both estimators in terms of the Kullback-Leiber divergence and the $\ell_2$ error and also establish a minimax lower bound to assess the tightness of these rates. For computing the nonconvex estimator, we develop a novel DC (difference of convex function) programming algorithm that starts with the convex M-estimator and then successively refines the solution till convergence. Empirical experiments demonstrate consistent superiority of the nonconvex estimator over the convex one.


翻译:从数据中建模未知系统是系统优化和顺序决策的先导。 在本文中, 我们侧重于从单一的国家轨迹中学习Markov 模型。 假设过渡模型尽管有较大的状态空间, 但其排名较低, 意味着系统接受低维潜伏结构。 我们显示, 可以使用与国家总数成正比的长度轨迹准确估算整个过渡模型。 我们提出两种最大可能性估算方法: 一种是核中枢调节法, 另一种是等级限制的非对流法。 我们以 Kullback- Leiber 的差异和 $\ ell_ 2$ 错误来明确得出两个测算器的统计率, 并且还建立一个小负缩微摩克斯, 以评估这些比率的紧凑性。 为了计算非convex 估计器, 我们开发了一个新颖的DC( convex 函数的宽度) 编程算算法, 它从 convex M- 估测算器开始, 然后连续调整解算法, 直至趋同。 实验显示非 convex 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
221+阅读 · 2020年6月5日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年1月18日
Arxiv
0+阅读 · 2021年1月16日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
221+阅读 · 2020年6月5日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员