Conservation laws are key theoretical and practical tools for understanding, characterizing, and modeling nonlinear dynamical systems. However, for many complex dynamical systems, the corresponding conserved quantities are difficult to identify, making it hard to analyze their dynamics and build efficient, stable predictive models. Current approaches for discovering conservation laws often depend on detailed dynamical information, such as the equation of motion or fine-grained time measurements, with many recent proposals also relying on black box parametric deep learning methods. We instead reformulate this task as a manifold learning problem and propose a non-parametric approach, combining the Wasserstein metric from optimal transport with diffusion maps, to discover conserved quantities that vary across trajectories sampled from a dynamical system. We test this new approach on a variety of physical systems$\unicode{x2014}$including conservative Hamiltonian systems, dissipative systems, and spatiotemporal systems$\unicode{x2014}$and demonstrate that our manifold learning method is able to both identify the number of conserved quantities and extract their values. Using tools from optimal transport theory and manifold learning, our proposed method provides a direct geometric approach to identifying conservation laws that is both robust and interpretable without requiring an explicit model of the system nor accurate time information.
翻译:保护法是理解、定性和建模非线性动态系统的关键理论和实践工具。然而,对于许多复杂的动态系统来说,相应的保护量难以确定,因此难以分析其动态并构建高效、稳定的预测模型。当前发现保护法的方法往往依赖于详细的动态信息,例如运动或细细细测时测量等等等动态信息,许多最新提案还依赖于黑盒深深深层学习法。我们改写这项任务,将其作为一个多重学习问题,提出一种非参数方法,将瓦瑟斯坦最佳运输标准与扩散图相结合,以发现在动态系统抽样的轨道上各不相同的受保护量。我们测试这种新方法的物理系统是$\uncode{x2014}$,其中包括保守的汉密尔顿系统、分散系统和空间设计系统$\unicode{x2014},并表明我们的多元学习方法既能确定节能数量,又能提取其价值。我们提出的方法从最优化的运输理论和多元学习工具中找出了保存量,我们提出的方法提供了一种精确的精确度方法,需要一种精确的精确的地理测量法的模型。我们提出的方法需要一种明确的精确的精确的模型。