Shortest path (SP) computation is the fundamental operation in various networks such as urban networks, logistic networks, communication networks, social networks, etc. With the development of technology and societal expansions, those networks tend to be massive. This, in turn, causes deteriorated performance of SP computation, and graph partitioning is commonly leveraged to scale up the SP algorithms. However, the partitioned shortest path (PSP) index has never been systematically investigated and theoretically analyzed, and there is a lack of experimental comparison among different PSP indexes. Moreover, few studies have explored PSP index maintenance in dynamic networks. Therefore, in this paper, we systematically analyze the dynamic PSP index by proposing a universal scheme for it. Specifically, we first propose two novel partitioned shortest path strategies (No-boundary and Post-boundary strategies) to improve the performance of PSP indexes and design the corresponding index maintenance approaches to deal with dynamic scenarios. Then we categorize the partition methods from the perspective of partition structure to facilitate the selection of partition methods in the PSP index. Furthermore, we propose a universal scheme for designing the PSP index by coupling its three dimensions (i.e. PSP strategy, partition structure, and SP algorithm). Based on this scheme, we propose five new PSP indexes with prominent performance in either query or update efficiency. Lastly, extensive experiments are implemented to demonstrate the effectiveness of the proposed PSP scheme, with valuable guidance provided on the PSP index design.
翻译:暂无翻译