Few-shot intent detection is a challenging task due to the scare annotation problem. In this paper, we propose a Pseudo Siamese Network (PSN) to generate labeled data for few-shot intents and alleviate this problem. PSN consists of two identical subnetworks with the same structure but different weights: an action network and an object network. Each subnetwork is a transformer-based variational autoencoder that tries to model the latent distribution of different components in the sentence. The action network is learned to understand action tokens and the object network focuses on object-related expressions. It provides an interpretable framework for generating an utterance with an action and an object existing in a given intent. Experiments on two real-world datasets show that PSN achieves state-of-the-art performance for the generalized few shot intent detection task.


翻译:微小的意向探测是一项艰巨的任务, 原因是有惊吓的笔记问题。 在本文中, 我们提议建立一个 Pseudo Siamese 网络( PSN), 以生成用于几发意图的标签数据并缓解这一问题。 PSN 由两个结构相同但重量不同的子网络组成: 一个动作网络和一个物体网络。 每个子网络都是一个基于变压器的变异自动编码器, 试图模拟该句中不同组件的潜在分布。 该动作网络学会了理解动作符号, 而对象网络则侧重于与对象有关的表达方式。 它提供了一个可解释的框架, 用来生成带有特定意图中存在的一个动作和对象的发音。 两个真实世界数据集的实验显示, PSN 能够实现一般的少量瞄准目的探测任务的最新性能 。

0
下载
关闭预览

相关内容

【AAAI2021】记忆门控循环网络
专知会员服务
48+阅读 · 2020年12月28日
【AAAI2021】低资源医疗对话生成的图演化元学习
专知会员服务
47+阅读 · 2020年12月26日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
【NeurIPS2019】图变换网络:Graph Transformer Network
专知会员服务
110+阅读 · 2019年11月25日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
CVPR2019 | 全景分割:Attention-guided Unified Network
极市平台
9+阅读 · 2019年3月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Using Scene Graph Context to Improve Image Generation
VIP会员
相关资讯
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
CVPR2019 | 全景分割:Attention-guided Unified Network
极市平台
9+阅读 · 2019年3月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员