Few-shot intent detection is a challenging task due to the scare annotation problem. In this paper, we propose a Pseudo Siamese Network (PSN) to generate labeled data for few-shot intents and alleviate this problem. PSN consists of two identical subnetworks with the same structure but different weights: an action network and an object network. Each subnetwork is a transformer-based variational autoencoder that tries to model the latent distribution of different components in the sentence. The action network is learned to understand action tokens and the object network focuses on object-related expressions. It provides an interpretable framework for generating an utterance with an action and an object existing in a given intent. Experiments on two real-world datasets show that PSN achieves state-of-the-art performance for the generalized few shot intent detection task.
翻译:微小的意向探测是一项艰巨的任务, 原因是有惊吓的笔记问题。 在本文中, 我们提议建立一个 Pseudo Siamese 网络( PSN), 以生成用于几发意图的标签数据并缓解这一问题。 PSN 由两个结构相同但重量不同的子网络组成: 一个动作网络和一个物体网络。 每个子网络都是一个基于变压器的变异自动编码器, 试图模拟该句中不同组件的潜在分布。 该动作网络学会了理解动作符号, 而对象网络则侧重于与对象有关的表达方式。 它提供了一个可解释的框架, 用来生成带有特定意图中存在的一个动作和对象的发音。 两个真实世界数据集的实验显示, PSN 能够实现一般的少量瞄准目的探测任务的最新性能 。